3D Crumpled Ultrathin 1T MoS2 for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors

Y-L. Shao*, J-H. Fu, Z. Cao, K-P. Song, R-F. Sun, Y. Wan, A. Shamim, L. Cavallo, Y. Han, R. B. Kaner*, V. C. Tung
ACS Nano, 73087318, (2020)


Supercapacitors, MoS2, Printing technique, Mg-ion, Microdevice


​Metallic molybdenum disulfide (MoS2), e.g., 1T phase, is touted as a highly promising material for energy storage that already displays a great capacitive performance. However, due to its tendency to aggregate and restack, it remains a formidable challenge to assemble a high-performance electrode without scrambling the intrinsic structure. Here, we report an electrohydrodynamic-assisted fabrication of 3D crumpled MoS2 (c-MoS2) and its formation of an additive-free stable ink for scalable inkjet printing. The 3D c-MoS2 powders exhibited a high concentration of metallic 1T phase and an ultrathin structure. The aggregation-resistant properties of the 3D crumpled particles endow the electrodes with open space for electrolyte ion transport. Importantly, we experimentally discovered and theoretically validated that 3D 1T c-MoS2 enables an extended electrochemical stable working potential range and enhanced capacitive performance in a bivalent magnesium-ion aqueous electrolyte. With reduced graphene oxide (rGO) as the positive electrode material, we inkjet-printed 96 rigid asymmetric micro-supercapacitors (AMSCs) on a 4-in. Si/SiO2 wafer and 100 flexible AMSCs on photo paper. These AMSCs exhibited a wide stable working voltage of 1.75 V and excellent capacitance retention of 96% over 20 000 cycles for a single device. Our work highlights the promise of 3D layered materials as well-dispersed functional materials for large-scale printed flexible energy storage devices.


DOI: https://doi.org/10.1021/acsnano.0c02585


Website PDF

See all publications 2020