Organic X-ray excitement for innovative imaging

08 January, 2023

Stable low-cost organic-based materials could transform X-ray imaging by improving fabrication methods and providing reliable high-resolution imaging results. Now, KAUST researchers have developed a novel approach for designing and building such high-performance scintillator materials for detecting X-rays at low doses.

A scintillator is a material that, when hit by high-energy ionizing radiation such as X-rays, absorbs the energy and reemits some of it as low-energy visible light. Scintillators are widely used for X-ray imaging screens in multiple applications, from airport security scanners to medical radiography. However, most existing scintillators are made from ceramic or perovskite materials, which are often fabricated under harsh conditions and can be plagued with poor stability over time when exposed to light and air.




  1. Wang, J-X., Gutiérrez-Arzaluz, L, Wang, X., He, T., Zhang, Y., Eddaoudi, M., Bakr, O.M. & Mohammed, O.F. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nature Photonics 16, 869-875 (2022).| article

  2. Wang,J-X., Dutta, I., Yin, J., He,T., Gutierrez-Arzaluz, L., Bakr, O.M., Eddaoudi, M., Huang, K.-W. & Mohammed, O.F. Triplet-triplet energy-transfer-based transparent X-ray imaging scintillators. Matter 6, 1–9 January (2023). | article